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Although it has been widely recognized that 
nonmetric scaling algorithms are potentially 
susceptible to local minimum problems, there is 

little systematic data on the relative frequency 
with which these programs will become trapped in 

nonoptimal stationary positions. This study 
provides detailed information on this question. 

An empirically obtained measure of the dis- 
similarity of any two objects in a set P of n 

objects gives rise to an order relation on P x P. 
Nonmetric multidimensional scaling seeks to rep- 
resent this dissimilarity ordering as a geometr- 
ical model by mapping the objects of P into a 
metric space, where the ordering of the distances 
corresponds to the observed ordering of the dis- 
similarities. Thus, if s.. Is the dissimilarity 
measure obtained for objects i and j, 

dij < dkl iff 
siJ 

where is the metric distance between points 
i and j . 

Practical computer algorithms (e.g. Kruskal 
[2], McGee[4], Guttman[I], Young[7]) for obtain- 
ing a configuration of n points in m- dimensional 
space have been based on an iterative procedure 
designed to minimize the residual sum of squares 
(called "stress ") 

(2) S = (dij - 

or some other quantity which is monotonically 
related to S (see Spence[63). The {dij} are 

metric distances, and the are pseudo dist- 

ances. The pseudo distances have the property 

TABLE I 

of being order isomorphic to the dissimilarities 
}, and have the same scale as the {di }. 

Further, if the are chosen to minimize S, 

given a particular set of {dij }, the resulting 

pseudo distances are known as the {dij} (Kruskal 

[2]). The minimization of S is not trivial since 
an optimal set of ) is not known. Consequent- 
ly, an alternating algorithm has been proposed 
(Kruskal[2], Guttman[I]): this procedure switches 

between satisfying the metric distance requirement 
and the order isomorphy requirement, with the hope 
that satisfying both in turn will eventually res- 
ult in the algorithm arriving at a stationary pos- 
ition where both requirements will be optimally 
satisfied. In the Euclidean case, the following 

algorithm may be used: 
I. Choose an initial Xn 

x m : 
a configuration of 

points in m- space. 
2. Compute Dn 

x n 
from Xn 

x m 
where 

d.. = E (xia x 
a) 

2 I/2 
a =1 

3. Choose 
An x n 

with general entry d.. 

4. Move Dn 
x n 

towards 
An x n 

by use of a gradient 

algorithm to minimize S. Typically only one step 
is taken, viz., 

n 

(3) x=x - I (xia ; 
J 

- 

however, if desired, more than one step may be 
taken --with a fixed set of } --as in Guttman[I]. 

5. Test for termination: if further improvement is 

desired, go to 2 with the new X. Else, 

6. End. 

Summary of the Essential differences among the Algorithms 

Algorithms 

Options M -D -SCAL SSA -I TORSCA 

Choice of 
initial 
configuration. 

does not make full 
use of information 
in the input data. 

attempts to make 
"optimal" use of 
the input data. 

attempts to make 
"optimal" use of 
the input data. 

Choice of 
pseudo 
distances, 

to minimize S, 
hence these are 
the 

{diJ} 

ascending 
permutation of 
the {d..} called 

Does not 

minimize S. 

to minimize S, 

hence these are 
the 

. 
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There are two arbitrary points in the specif- 
ication of the above algorithm: both the initial 
configuration and the pseudo distances may be 
chosen in a variety of ways. These choices may be 
expected to have some effect on the overall per- 
formance of the algorithm, especially with resp- 
ect to the avoidance of nonoptimal stationary 
solutions. 

In a study which is reported in greater 
detail elsewhere (Spence[6]), three widely used 
algorithms were compared using Monte Carlo tech- 
niques. The programs were Kruskal's M -D -SCAL 
(Kruskal[3]), Guttman -Lingoes's SSA -I (Guttman 
[I]), and Young -Torgerson's TORSCA -9 (Young[7]). 
The essential differences among these procedures 
are summarized in Table I. Known configurations 
were used as the basis for computing sets of dis- 
similarities which were then scaled by each of the 
algorithms. The recovered configurations were 
then compared with the known generated configur- 
ations. Specifically, the following method was 
used: 
I. Choose n and m'and generate the n x m coordin- 
ates of X by sampling from the rectangular inter- 
val [ -I, +I] with the additional constraint that 
all points lie within a hypersphere of unit rad- 

2. Compute d [ (xea 
xea)2]I /2 

j a 

where xea 
= xia + N(O, a2) , and 

= 0.00; 0.15; 0.25; 0.35; is the set of 

error values used. This method of injecting 
error corresponds to a multidimensional analogue 
of Thurstone's Case V (see Ramsay[5]). The dis- 
similarity matrices were computed with entry 

1.8 (d!.)2 + 5.5 if ak = 0.00, 
(4) s. = . 

de otherwise. 

3. Obtain scaling solutions in m = I, , 5 

recovered dimensions using each of the algorithms. 

Compute S1 = (d - d)2/ 
d2 ]1/2 

and r(d,dt) 

--the product moment correlation coefficient 
between the recovered and true distances --as 
measures of goodness of fit and metric recovery 
respectively. 

In a single computer run n was varied from 6 
to 36 and m from I to 4; in total, each of the 
three algorithms processed: 

DISTINCT CONFIGURATIONS(I8) x ERROR LEVELS(4) 

x RECOVERED DIMENSIONS(5) = 360 SOLUTIONS . 

Two replications were obtained; hence, 2160 
solutions were computed. 

Results and Discussion 

The initial configurations generated by the 
TORSCA program were invariably much better, in 

terms of goodness of fit and metric recovery, 
than the approximations generated by the other 
two algorithms. SSA -I and M -D -SCAL did not 
differ significantly in their abilities to prod- 
uce a starting configuration. The final solutions 
produced by the three procedures were, in the vast 
majority of cases, virtually identical; indeed, 
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analysis of variance showed that the hypothesis 
of no differences among the programs could not be 
rejected (see Spence[6]). However, in some of 
the solutions, one or more of the algorithms obt- 
ained a solution which deviated considerably from 
the best attempt. 

A simple method was used to investigate this 
local minimum problem: it was assumed that at 
least one of the three algorithms would, in all 

cases, get very close to the global minimum. 
This seems to be a plausible assumption, since 
these programs use rather different methods to 

produce a solution. Furthermore, this assumption 
is reinforced by the fact that inspection of the 

data showed that in almost all cases at least two 

of the algorithms finished in virtually identical 
positions. Using the criterion of goodness of fit 

defined above, S1, and considering each of the 720 

solutions attempted per algorithm separately, the 
deviations of the values obtained by the other 
two programs from the lowest stress value were 
computed. If any deviation exceeded a preset 
threshold criterion, then the deviating algorithm 
was considered to be in a local minimum position. 

The results of this analysis are shown in 

Table 2 for different values of the threshold 

(varying from 0.005 to 0.050). The 0.005 thresh- 
old is probably too stringent a criterion since 
a deviation of this magnitude may simply indicate 
that the offending algorithm was moving slowly in 

the region of the minimum, and had not quite con- 

verged. However, as the threshold size is incr- 

eased to 0.010, and above, an interesting pattern 
emerges. It seems to be clear that TORSCA is 

least troubled by local minimum problems (in terms 
of the above operational definition), and SSA -I 
is only a little worse; although, it does appear 
from the data that SSA -1 may not have fully con- 
verged, since the vast majority of SSA -I deviat- 

ions are of the order of 10 
-3 

. M- D-SCAL appears 
to be much more sensitive to local minimum prob- 
lems than the other two algorithms, and, more 

importantly, 27 of its solutions deviated by more 
than 0.050 from the presumed minimum stress value. 
By contrast, only one of the 1440 SSA -I and TORSCA 
solutions deviated by more than this amount from 
the minimum value, and, in fact, only five of the 
SSA -I and TORSCA solutions deviated by more than 

0.030. In one dimension the problem seems to be 
especially severe, and consequently, in practical 
situations, it would be prudent to regard any one 
dimensional solution with some suspicion, irresp- 

ective of the method used to derive the initial 
configuration. 

Conclusions 

It is reasonable to attribute the excellent 
performance of TORSCA to its very good initial 

configuration; as has already been noted, the 

TORSCA starting position was easily the best. 

Likewise, the poorest performance (by M -D -SCAL) 
may be partially attributed to its often unsatis- 
factory initial configuration. The fairly good 
performance of SSA -1 is rather more difficult to 
explain on the basis of the quality of the initial 

configuration; the SSA -I initial configuration 
was not much better, in general, than the 

M -D -SCAL starting configuration. Indeed, it is 



TABLE 2 

Frequency of Deviation from the Presumed Minimum Stress Value 

Threshold Program 
Dimensionality 

Totals 
I 2 3 4 5 

TORSCA 30 II 8 8 21 78 

0.005 SSA -I 25 32 36 44 38 175 

M -D -SCAL 64 29 10 10 10 123 

TORSCA 18 0 4 I 2 25 

0.010 SSA -I 14 12 12 16 8 62 
M-D -SCAL 55 22 5 3 5 90 

TORSCA 5 0 0 0 0 5 

0.020 SSA -I 3 2 4 5 0 14 

M- D-SCAL 43 9 4 I 4 46 

TORSCA 2 0 0 0 0 2 

0.030 SSA -I 2 0 0 I 0 3 

M- D-SCAL 32 5 4 I 4 46 

TORSCA 0 0 0 0 

0.050 SSA -1 I 0 0 

M- D-SCAL 19 0 3 1 4 27 

Note. --The total number of solutions per algorithm was 720, hence 
there were 144 solutions per algorithm per dimension. 

probable that the use of the 
{di 

} produces a 

more "Jumpy" algorithm which tends to step over 
small local depressions on its way to the minimum. 
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